Abstract
Grain nitrogen (N) uptake (GNup) in winter wheat (Triticum aestivum L.) is influenced by multiple components at the plant organ level and by pre- and post-flowering N uptake (Nup). Although spectral proximal high-throughput sensing is promising for field phenotyping, it was rarely evaluated for such N traits. Hence, 48 spectral vegetation indices (SVIs) were evaluated on 10 measurement days for the estimation of 34 N traits in four data subsets, representing the variation generated by six high-yielding cultivars, two N fertilization levels (N), two sowing dates (SD), and two fungicide (F) intensities. Close linear relationships (p < 0.001) were found for GNup both in response to cultivar differences (Cv; R2 = 0.52) and other agronomic treatments (R2 = 0.67 for Cv*F*N, R2 = 0.53 for Cv*SD*N and R2 = 0.57 for the combined treatments), notably during milk ripeness. Especially near-infrared (NIR)/red edge SVIs, such as the NDRE_770_750, outperformed NIR/visible light (VIS) indices. Index rankings and seasonal R2 values were similar for total Nup, while the N harvest index, which expresses the partitioning to the grain, was moderately estimated only during dough ripeness, primarily from indices detecting contrasting senescence between different fungicide intensities. Senescence-sensitive indices, including R787_R765 and TRCARI_OSAVI, performed best for N translocation efficiency and some organ-level N traits at maturity. Even though grain N concentration was best assessed by the red edge inflection point (REIP), the blue/green index (BGI) was more suited for leaf-level N traits at anthesis. When SVIs were quantitatively ranked by data subsets, a better agreement was found for GNup, total Nup, and grain N concentration than for several contributing N traits. The results suggest (i) a good general potential for estimating GNup and total Nup by (ii) red edge indices best used (iii) during milk and early dough ripeness. The estimation of contributing N traits differs according to the agronomic treatment.
Funder
Deutsche Forschungsgemeinschaft
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献