Wear and Corrosion Resistance of FeCoCrxNiAl High-Entropy Alloy Coatings Fabricated by Laser Cladding on Q345 Welded Joint

Author:

Ben Qiang,Zhang Yumeng,Sun Longxiang,Wang LeileiORCID,Wang Yanni,Zhan Xiaohong

Abstract

High-entropy alloy (HEA) coatings on the surface of low-alloy steel by laser cladding can improve the corrosion and wear resistance, and the performance can be further improved by adding the Cr element. However, the effect of Cr content on the microstructure, hardness, wear and corrosion resistance of the coatings on the welded joint has not been completely understood in the literature. This paper aims at revealing the influence of Cr content on the microstructure and properties of laser-cladded FeCoCrxNiAl HEA on different regions of Q345 welded structure. The results indicate that FeCoCrxNiAl HEA coating has good metallurgical bonding with the Q345 welded surface. The increase of Cr element content in the powder plays an important role in energy absorption of powder and substrate, affecting the dilution rate and diffusion of Fe from the substrate to HEA coating. The HEA coating is mainly composed of the face-centered cubic phase (FCC) and body-centered cubic phase (BCC). When x = 1.5, the actual Cr element content of coating is the highest, which promotes the formation of hard brittle phase BCC, and subsequently affects the hardness and wear resistance of the sample. Meanwhile, the corrosion resistance increases and then decreases, and reaches the highest when x = 1.5. Due to the existence of Cr and other elements with good corrosion resistance in the HEA coating, a dense oxide film can be formed in 3.5 wt.% NaCl solution and neutral salt spray environment to prevent the corrosion from continuing, which can effectively improve the corrosion resistance of each region of the welded joint, and the protective efficiencies on the weld bead (WB), heat-affected zone (HAZ) and base metal (BM) are 99.1, 98.4 and 96.6%, respectively.

Funder

Foundation of National Key Laboratory of Science and Technology on Helicopter Transmission

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3