Depth-Guided Dehazing Network for Long-Range Aerial Scenes

Author:

Wang Yihu1ORCID,Zhao Jilin1,Yao Liangliang1,Fu Changhong1

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China

Abstract

Over the past few years, the applications of unmanned aerial vehicles (UAVs) have greatly increased. However, the decrease in clarity in hazy environments is an important constraint on their further development. Current research on image dehazing mainly focuses on normal scenes at close range or mid-range, while ignoring long-range scenes such as aerial perspective. Furthermore, based on the atmospheric scattering model, the inclusion of depth information is essential for the procedure of image dehazing, especially when dealing with images that exhibit substantial variations in depth. However, most existing models neglect this important information. Consequently, these state-of-the-art (SOTA) methods perform inadequately in dehazing when applied to long-range images. For the purpose of dealing with the above challenges, we propose the construction of a depth-guided dehazing network designed specifically for long-range aerial scenes. Initially, we introduce the depth prediction subnetwork to accurately extract depth information from long-range aerial images, taking into account the substantial variance in haze density. Subsequently, we propose the depth-guided attention module, which integrates a depth map with dehazing features through the attention mechanism, guiding the dehazing process and enabling the effective removal of haze in long-range areas. Furthermore, considering the unique characteristics of long-range aerial scenes, we introduce the UAV-HAZE dataset, specifically designed for training and evaluating dehazing methods in such scenarios. Finally, we conduct extensive experiments to test our method against several SOTA dehazing methods and demonstrate its superiority over others.

Funder

Natural Science Foundation of Shanghai

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3