Laser-Induced-Plasma-Assisted Ablation and Metallization on C-Plane Single Crystal Sapphire (c-Al2O3)

Author:

Lu XizhaoORCID,Jiang Feng,Lei Tingping,Zhou RuiORCID,Zhang ChentaoORCID,Zheng Gaofeng,Wen Qiuling,Chen ZhongORCID

Abstract

Laser-induced-plasma-assisted ablation (LIPAA) is a promising micro-machining method that can fabricate microstructure on hard and transparent double-polished single crystal sapphire (SCS). While ablating, a nanosecond pulse 1064 nm wavelength laser beam travels through the SCS substrate and bombards the copper target lined up behind the substrate, which excites the ablating plasma. When laser fluence rises and is above the machining threshold of copper but below that of SCS, the kinetic energy of the copper plasma generated from the bombardment is mainly determined by the laser fluence, the repetition rate, and the substrate-to-target distance. With a lower repetition rate, SCS becomes metallized and gains conductivity. When micro-machining SCS with a pulsed laser are controlled by properly controlling laser machining parameters, such as laser fluence, repetition rate, and substrate-to-target distance, LIPAA can ablate certain line widths and depths of the microstructure as well as the resistance of SCS. On the contrary, conductivity resistance of metalized sapphire depends on laser parameters and distance in addition to lower repetition rate.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3