Removal of Cs-137 from Liquid Alkaline High-Level Radwaste Simulated Solution by Sorbents of Various Classes

Author:

Milyutin Vitaly1,Nekrasova Natalya1ORCID,Kozlov Pavel2,Slobodyuk Arseni3,Markova Darya2,Shaidullin Sergey2,Feoktistov Kirill2,Tokar Eduard3ORCID,Tutov Mikhail3,Egorin Andrei3ORCID

Affiliation:

1. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow 1119071, Russia

2. Mayak Production Assosiation, 31 Prospect Lenina, Ozersk 456780, Russia

3. Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russia

Abstract

The present work describes the results of the removal of cesium by sorbents of various classes from highly mineralized alkaline solutions simulating the clarified phase of storage tanks with high-level radioactive waste (HLW) of the Mayak Production Association. Within the scope of the performed works, inorganic sorbents of the Clevasol® and Fersal brands, as well as resorcinol-formaldehyde ion-exchange resins (RFRs: RFR-i, RFR-Ca, and Axionit RCs), were used. The sorbents’ characteristics under both static and dynamic conditions are presented. The Fersal sorbent has demonstrated the best sorption characteristics in the series of sorbents under study. The disadvantage of inorganic sorbents is the loss of mechanical strength upon cesium desorption, which complicates their repeated use. It has been demonstrated that RFRs, despite their lower selectivity towards cesium and adsorption capacity, can be used many times in repeated sorption-desorption cycles. The latter makes RFRs more technologically attractive in terms of the total volume of decontaminated HLW. However, RFRs tend to be oxidized during storage, which results in the formation of carboxyl groups and a decrease in sorption characteristics—this must be further taken into account in the real processes of liquid radioactive waste (LRW) management.

Funder

Cs-137 adsorption studies

State Order of the Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3