Design Aspects for Portable LED-Based Colorimetric Characterisation Systems Targeting Liquid Analytes

Author:

Dupont François1ORCID,Stoukatch Serguei1ORCID,Laurent Philippe1,Eersels Kasper2ORCID,van Grinsven Bart2ORCID,Redouté Jean-Michel1ORCID

Affiliation:

1. Microsys Laboratory, Department of Electrical Engineering and Computer Science, University of Liège, 4000 Liège, Belgium

2. Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD Maastricht, The Netherlands

Abstract

Colorimetric characterisation systems based on LEDs and RBG sensors are straightforward to implement, are highly integrable allowing for portable measurement systems and can be constructed using widespread and affordable components. They have already proved to be a satisfactory solution in several applications related to chemical analysis. In this paper, we present an RGB sensor-based prototype for colorimetric characterisation, which can accommodate cuvettes with optical paths of 10 mm and 40 mm. We assessed the impact of experimental condition parameters such as the variability of the analyte volume in the cuvette, as well as the presence of floating particles or deposits at the bottom of the cuvette. While these would not impact the result given by a spectrophotometer that generally has a directional light source, they must be considered in LED/RGB sensor analysers in which the light path is not tightly controlled. We demonstrated that there is a minimal sensor height above the bottom of the cuvette and a minimal analyte level (both depending on the prototype optical path length) above which the analyte volume and the presence of floating particles and deposits have no impact on the prototype output signal. Finally, based on these results, we proposed a test method for a quick dye-displacement assay, in which the reagent is a dye-loaded molecularly imprinted polymer that is poured directly into a cuvette.

Funder

Interreg EMR Food_Screening project

Interreg Euregio Meuse-Rhin

Walloon Region of Belgium

Ministerie van Economische Zaken en Klimaat

Provincie Limburg

Die Landesregierung Nordrhein-Westfalen

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3