Estimating and Calibrating DER Model Parameters Using Levenberg–Marquardt Algorithm in Renewable Rich Power Grid

Author:

Foroutan Armina1,Basumallik Sagnik2ORCID,Srivastava Anurag2ORCID

Affiliation:

1. GE, Bothell, WA 98011, USA

2. Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA

Abstract

The proliferation of inverter-based distributed energy resources (IBDERs) has increased the number of control variables and dynamic interactions, leading to new grid control challenges. For stability analysis and designing appropriate protection controls, it is important that IBDER models are accurate. This paper focuses on the accurate estimation and parameter calibration of DER_A, a recently proposed aggregated IBDER model. In particular, we focus on the parameters of the reactive power–voltage regulation module. We formulate the problem of parameter tuning as a non-linear least square minimization problem and solve it using the Levenberg–Marquardt (LM) method. The LM method is primarily chosen due to its flexibility in adaptively selecting between the steepest descent and Gauss–Newton methods through a damping parameter. The LM approach is used to minimize the error between the actual measurements and the estimated response of the model. Further, the computational challenges posed by the numerical calculation of the Jacobian are tackled using a quasi-Newton root-finding approach. The proposed method is validated on a real feeder model in the northeastern part of the United States. The feeder is modeled in OpenDSS and the measurements thus obtained are fed to the DER_A model for calibration. The simulation results indicate that our approach is able to successfully calibrate the relevant model parameters quickly and with high accuracy, with a total sum of square error of 3.57×10−7.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

1. Impact of distributed photovoltaic systems on zone substation peak demand;Haghdadi;IEEE Trans. Sustain. Energy,2017

2. Voltage control in future electrical distribution networks;Murray;Renew. Sustain. Energy Rev.,2021

3. Transmission Hosting Capacity of Distributed Energy Resources;Cicilio;IEEE Trans. Sustain. Energy,2020

4. CIGRE (2018). Modelling of Inverter-Based Generation for Power System Dynamic Studies, CIGRE.

5. (2018). IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces (Standard No. IEEE 1547-2018).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3