Experimental Investigation of Low-Frequency Distributed Acoustic Sensor Responses to Two Parallel Propagating Fractures

Author:

Reid Teresa12,Li Gongsheng13,Zhu Ding1,Hill A. Daniel1

Affiliation:

1. Harold Vance Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA

2. Chevron, 1600 Smith Street, Houston, TX 77002, USA

3. Pioneer Natural Resources, 777 Hidden Rdg, Irving, TX 75038, USA

Abstract

Low-frequency distributed acoustic sensing (LF-DAS) is a diagnostic tool for hydraulic fracture propagation with far-field monitoring using fiber optic sensors. LF-DAS senses strain rate variation caused by stress field change due to fracture propagation. Fiber optic sensors are installed in the monitoring wells in the vicinity of a fractured well. From the strain responses, fracture propagation can be evaluated. To understand subsurface conditions with multiple propagating fractures, a laboratory-scale hydraulic fracture experiment was performed simulating the LF-DAS response to fracture propagation with embedded distributed optical fiber strain sensors under these conditions. The experiment was performed using a transparent cube of epoxy with two parallel radial initial flaws centered in the cube. Fluid was injected into the sample to generate fractures along the initial flaws. The experiment used distributed high-definition fiber optic strain sensors with tight spatial resolutions. The sensors were embedded at two different locations on opposite sides of the initial flaws, serving as observation/monitoring locations. We also employed finite element modeling to numerically solve the linear elastic equations of equilibrium continuity and stress–strain relationships. The measured strains from the experiment were compared to simulation results from the finite element model. The experimentally derived strain and strain-rate waterfall plots from this study show the responses to both fractures propagating, while the fracture at the lower position took most of the fluid during the experiment. Interestingly, a fracture first began propagating from the upper flaw of the two flaws, but once the lower fracture was initiated, it grew much faster than the upper fracture. Both fibers were intercepted by the lower fracture, further verifying the strain signature as a fracture is approaching and intersecting an offset fiber.

Funder

Department of Energy’s Office of Fossil Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3