How to Use Localized Surface Plasmon for Monitoring the Adsorption of Thiol Molecules on Gold Nanoparticles?

Author:

Dileseigres Angeline S.,Prado YoannORCID,Pluchery OlivierORCID

Abstract

The functionalization of spherical gold nanoparticles (AuNPs) in solution with thiol molecules is essential for further developing their applications. AuNPs exhibit a clear localized surface plasmon resonance (LSPR) at 520 nm in water for 20 nm size nanoparticles, which is extremely sensitive to the local surface chemistry. In this study, we revisit the use of UV-visible spectroscopy for monitoring the LSPR peak and investigate the progressive reaction of thiol molecules on 22 nm gold nanoparticles. FTIR spectroscopy and TEM are used for confirming the nature of ligands and the nanoparticle diameter. Two thiols are studied: 11-mercaptoundecanoic acid (MUDA) and 16-mercaptohexadecanoic acid (MHDA). Surface saturation is detected after adding 20 nmol of thiols into 1.3 × 10−3 nmol of AuNPs, corresponding approximately to 15,000 molecules per AuNPs (which is equivalent to 10.0 molecules per nm2). Saturation corresponds to an LSPR shift of 2.7 nm and 3.9 nm for MUDA and MHDA, respectively. This LSPR shift is analyzed with an easy-to-use analytical model that accurately predicts the wavelength shift. The case of dodecanehtiol (DDT) where the LSPR shift is 15.6 nm is also quickly commented. An insight into the kinetics of the functionalization is obtained by monitoring the reaction for a low thiol concentration, and the reaction appears to be completed in less than one hour.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3