Amidoamine Oxide Surfactants as Low-Molecular-Weight Hydrogelators: Effect of Methylene Chain Length on Aggregate Structure and Rheological Behavior

Author:

Kakehashi Rie1ORCID,Tokai Naoji1,Nakagawa Makoto1,Kawasaki Kazunori2,Horiuchi Shin3,Yamamoto Atsushi4

Affiliation:

1. Surfactant Laboratory, Osaka Research Institute of Industrial Science and Technology, Osaka 536-8553, Japan

2. Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan

3. Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan

4. Faculty of Environmental Studies, Tottori University of Environmental Studies, Tottori 689-1111, Japan

Abstract

Rheology control is an important issue in many industrial products such as cosmetics and paints. Recently, low-molecular-weight compounds have attracted considerable attention as thickeners/gelators for various solvents; however, there is still a significant need for molecular design guidelines for industrial applications. Amidoamine oxides (AAOs), which are long-chain alkylamine oxides with three amide groups, are surfactants that act as hydrogelators. Here, we show the relationship between the length of methylene chains at four different locations of AAOs, the aggregate structure, the gelation temperature Tgel, and the viscoelasticity of the formed hydrogels. As seen from the results of electron microscopic observations, the aggregate structure (ribbon-like or rod-like) can be controlled by changing the length of methylene chain in the hydrophobic part, the length of methylene chain between the amide and amine oxide groups, and the lengths of methylene chains between amide groups. Furthermore, hydrogels consisting of rod-like aggregates showed significantly higher viscoelasticity than those consisting of ribbon-like aggregates. In other words, it was shown that the gel viscoelasticity could be controlled by changing the methylene chain lengths at four different locations of the AAO.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Corrosion inhibition in pipelines and equipment;Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3