Abstract
Corporate fraud is not only curtailed investors’ rights and privileges but also disrupts the overall market economy. For this reason, the formulation of a model that could help detect any unusual market fluctuations would be essential for investors. Thus, we propose an early warning system for predicting fraud associated with financial statements based on the Bayesian probit model while examining historical data from 1999 to 2017 with 327 businesses in Taiwan to create a visual method to aid in decision making. In this study, we utilize a parametric estimation via the Markov Chain Monte Carlo (MCMC). The result show that it can reduce over or under-confidence within the decision-making process when standard logistic regression is utilized. In addition, the Bayesian probit model in this study is found to offer more accurate calculations and not only represent the prediction value of the responses but also possible ranges of these responses via a simple plot.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Reference57 articles.
1. Using Financial Statement Data To Identify Factors Associated With Fraudulent Financial Reporting
2. Can financial ratios detect fraudulent financial reporting?
3. Report to the Nations on Occupational Fraud and Abusehttps://www.acfe.com/report-to-the-nations/2020/
4. The Accountant’s Handbook of Fraud and Commercial Crime;Bologna,1993
5. The theory of agency
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献