Investigation of Co-Cr-Fe-Mn-Ni Non-Equiatomic High-Entropy Alloy Fabricated by Wire Arc Additive Manufacturing

Author:

Osintsev KirillORCID,Konovalov SergeyORCID,Zaguliaev DmitriiORCID,Ivanov Yurii,Gromov Victor,Panchenko Irina

Abstract

Fabrication of high-entropy alloys (HEAs) is a crucial area of interest for materials scientists since these metallic materials may have many practical uses. Wire arc additive manufacturing (WAAM), unlike other additive technologies, has tangible benefits for making large-sized components, but manufacturing the wire from HEAs is still very limited. Recent studies suggested tackling this problem using a combined cable composed of wires consisting of pure elements as feeding material. However, not all compositions of HEAs can be obtained by the pure elements’ wires because the number of them is limited. This study aims to examine phase composition, chemical elements distribution, microstructure, and mechanical properties of a Co-Cr-Fe-Mn-Ni HEA, which was not previously obtained by the WAAM. The cable-type wire used in this study is composed of two wires which consist of Cr, Fe, Mn, and Ni, and one pure Co wire. The phase composition, chemical elements distribution, microstructure, and mechanical properties were investigated. The prepared high-entropy alloy has non-equiatomic chemical composition with a single-phase FCC crystal structure with homogeneously distributed elements inside the grains. The microstructure examinations showed dendrite structure which is typical for WAAM processes. The compressive yield strength of the alloy is ~279 MPa, the ultimate compressive strength is ~1689 MPa, the elongation is 63%, and the microhardness is ~150 HV, which was found to be similar to the previously fabricated Co-Cr-Fe-Mn-Ni alloys by other methods. Fracture analysis confirmed the ductile behavior of deformation by the presence of dimples.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3