Effect of Interpass Temperature on Wire Arc Additive Manufacturing Using High-Strength Metal-Cored Wire

Author:

Zhai WengangORCID,Wu Naien,Zhou WeiORCID

Abstract

Wire arc additive manufacturing (WAAM) is suitable to fabricate large components because of its high deposition rate. In this study, a metal-cored low-alloy high-strength welding filler metal was used as feedstock. Single wall structures were prepared using the WAAM process with different interpass temperatures (150 °C, 350 °C, and 600 °C). No obvious microstructure change was observed when the alloy was deposited with the interpass temperatures of 150 °C and 350 °C. Electron backscattered diffraction analysis shows that that no significant texture is developed in the samples. The yield strength tends to decrease with the increase in interpass temperature; however, the influence is insignificant. The highest ultimate tensile strength is found at the interpass temperature of 350 °C. A higher interpass temperature can lead to a higher deposition rate because of the shorter waiting time for the cooling of the earlier deposited layer. It was found that the upper limit interpass temperature for WAAM of the low-alloy high-strength steel is 350 °C. When a higher interpass temperature of 600 °C was used, collapse of the deposited materials was observed.

Funder

LUX Photonics Consortium and Precision Laser Solutions Pte. Ltd.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3