Study on SR-Crossbar RF MEMS Switch Matrix Port Configuration Scheme with Optimized Consistency

Author:

Zhou Weiwei1,Sheng Weixing1,Yan Binyun1

Affiliation:

1. School of Electronic and Optical Engineering, Nanjing 210094, China

Abstract

The performance consistency of an RF MEMS switch matrix is a crucial metric that directly impacts its operational lifespan. An improved crossbar-based RF MEMS switch matrix topology, SR-Crossbar, was investigated in this article. An optimized port configuration scheme was proposed for the RF MEMS switch matrix. Both the utilization probability of individual switch nodes and the path lengths in the switch matrix achieve their best consistency simultaneously under the proposed port configuration scheme. One significant advantage of this scheme lies in that it only adjusts the positions of the input and output ports, with the topology and individual switch nodes kept unchanged. This grants it a high level of generality and feasibility and also introduces an additional degree of freedom for optimizations. In this article, a universal utilization probability function of single nodes was constructed and an optimization objective function for the SR-Crossbar RF MEMS switch matrix was formulated, which provide a convenient approach to directly solving the optimized port configuration scheme for practical applications. Simulations to demonstrate the optimized dynamic and static consistencies were conducted. For an 8 × 8 SR-Crossbar switch matrix, the standard deviations of contact resistances of 128 units and losses of all 64 paths decreased from 1.00 and 0.42 to 0.51 and 0.23, respectively. These results aligned closely with theoretical calculations derived from the proposed model.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3