Abstract
In this study, a polydopamine (PDA) and polyethyleneimine (PEI)-assisted approach was developed to generate well-distributed PDA/PEI/silver (PDA/PEI/Ag) nanocomplexes on the surfaces of commercial cellulose filter papers to achieve substantial bacterial reduction under gravity-driven filtration. PDA can bind to cellulose paper and act as a reducer to produce silver nanoparticles (AgNPs), while PEI can react with oxidative dopamine and act as a dispersant to avoid the aggregation of AgNPs. The successful immobilization of PDA/PEI/Ag nanocomplexes was confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used as pathogen models to test the efficacy of the PDA/PEI/Ag nanocomplex-incorporated filter papers. The PDA/PEI/Ag nanocomplex-incorporated filter papers provided a substantial bacterial removal of up to 99% by simple gravity filtration. This work may be useful to develop a feasible industrial production process for the integration of biocidal AgNPs into cellulose filter paper and is recommended as a local-condition water-treatment technology to treat microbial-contaminated drinking water.
Funder
Ministry of Science and Technology, Taiwan
Subject
General Materials Science,General Chemical Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献