Genetic Diversity and Population Structure of Cylindrocarpon-like Fungi Infecting Ginseng Roots in Northeast China

Author:

Lu Xiaohong,Zhang Ximei,Jiao Xiaolin,Hao JianjunORCID,Li Shidong,Gao Weiwei

Abstract

Northeast China is well known for cultivating ginseng (Panax ginseng and P. quinquefolius). Ginseng roots are threatened by the infection of the most notorious Cylindrocarpon-like fungi (CLF), which are a complex containing important soilborne pathogens. Although the disease is economically important, little is known about the genetic diversity and population structure of the pathogenic CLF complex. This knowledge will help in developing effective disease management strategies. To conduct this study, diseased ginseng roots were collected from 12 regions representing the main ginseng-growing areas in Northeast China, and CLF were isolated. A total of 169 isolates with CLF anamorph were identified in two Dactylonectria species and six Ilyonectria species using morphological and molecular methods. Cross pathogenicity tests showed that all species were pathogenic to both P. ginseng and P. quinquefolius, and most of them had slightly stronger aggressiveness in P. ginseng. The analysis of partial sequences of the Histone H3 gene generated a high level of genetic diversity and geographic differentiation. A total of 132 variable sites were detected in 169 sequences, which formed 20 haplotypes with a haplotype diversity of 0.824. Genetic differentiation was positively correlated with geographic distance. The geographic populations in the range of Changbai Mountain were distinctly discriminated from those in other non-Changbai Mountain populations. No significant genetic differentiation was found between ginseng hosts. Cylindrocarpon-like fungi causing ginseng root diseases are geographically correlated in the genetic distance in Northeast China and should be managed correspondingly.

Funder

China Postdoctoral Science Foundation

Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences

Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3