Evaluation of Object Surface Edge Profiles Detected with a 2-D Laser Scanning Sensor

Author:

Yan Tingting,Wang Xiaochan,Zhu Heping,Ling Peter

Abstract

Canopy edge profile detection is a critical component of plant recognition in variable-rate spray control systems. The accuracy of a high-speed 270° radial laser sensor was evaluated in detecting the surface edge profiles of six complex-shaped objects. These objects were toy balls with a pink smooth surface, light brown rectangular cardboard boxes, black and red texture surfaced basketballs, white smooth cylinders, and two different sized artificial plants. Evaluations included reconstructed three-dimensional (3-D) images for the object surfaces with the data acquired from the laser sensor at four different detection heights (0.25, 0.50, 0.75, and 1.00 m) above each object, five sensor travel speeds (1.6, 2.4, 3.2, 4.0, and 4.8 km h−1), and 8 to 15 horizontal distances to the sensor ranging from 0 to 3.5 m. Edge profiles of the six objects detected with the laser sensor were compared with images taken with a digital camera. The edge similarity score (ESS) was significantly affected by the horizontal distances of the objects, and the influence became weaker when the objects were placed closer to each other. The detection heights and travel speeds also influenced the ESS slightly. The overall average ESS ranged from 0.38 to 0.95 for all the objects under all the test conditions, thereby providing baseline information for the integration of the laser sensor into future development of greenhouse variable-rate spray systems to improve pesticide, irrigation, and nutrition application efficiencies through watering booms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3