The Solution Behavior of Dopamine in the Presence of Mono and Divalent Cations: A Thermodynamic Investigation in Different Experimental Conditions

Author:

Gigliuto Antonio,Cigala Rosalia MariaORCID,Irto AnnaORCID,Felice Maria Rosa,Pettignano AlbertoORCID,Milea DemetrioORCID,Materazzi StefanoORCID,De Stefano Concetta,Crea FrancescoORCID

Abstract

The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop−)] with methylmercury(II) (CH3Hg+), magnesium(II), calcium(II), and tin(II) were studied in NaCl(aq) at different ionic strengths and temperatures. Different speciation models were obtained, mainly characterized by mononuclear species. Only for Sn2+ we observed the formation of binuclear complexes (M2L2 and M2LOH (charge omitted for simplicity); M = Sn2+, L = Dop−). For CH3Hg+, the speciation model reported the ternary MLCl (M = CH3Hg+) complex. The dependence on the ionic strength of complex formation constants was modeled by using both an extended Debye–Hückel equation that included the Van’t Hoff term for the calculation of enthalpy change values of the formation and the Specific Ion Interaction Theory (SIT). The results highlighted that, in general, the entropy is the driving force of the process. The sequestering ability of dopamine towards the investigated cations was evaluated using the calculation of pL0.5 parameter. The sequestering ability trend resulted to be: Sn2+ > CH3Hg+ > Ca2+ > Mg2+. For example, at I = 0.15 mol dm−3, T = 298.15 K and pH = 7.4, pL0.5 = 3.46, 2.63, 1.15, and 2.27 for Sn2+, CH3Hg+, Ca2+ and Mg2+ (pH = 9.5 for Mg2+), respectively. For the Ca2+/Dop− system, the precipitates collected at the end of the potentiometric titrations were analyzed by thermogravimetry (TGA). The thermogravimetric calculations highlighted the formation of solid with stoichiometry dependent on the different metal:ligand ratios and concentrations of the starting solutions.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference54 articles.

1. Chemical Speciation in the Environment,2002

2. The Importance of Chemical “Speciation” in Environmental Processes;Bernhard,2012

3. Chemical Speciation of Some Classes of Low Molecular Weight Ligands in Seawater;De Robertis,1997

4. Dopamine: Methods and Protocols,2013

5. The Role of Brain Dopamine;Riederer,1989

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3