Abstract
Machine Learning has a significant impact on different aspects of science and technology including that of medical researches and life sciences. Diabetes Mellitus, more commonly known as diabetes, is a chronic disease that involves abnormally high levels of glucose sugar in blood cells and the usage of insulin in the human body. This article has focused on analyzing diabetes patients as well as detection of diabetes using different Machine Learning techniques to build up a model with a few dependencies based on the PIMA dataset. The model has been tested on an unseen portion of PIMA and also on the dataset collected from Kurmitola General Hospital, Dhaka, Bangladesh. The research is conducted to demonstrate the performance of several classifiers trained on a particular country’s diabetes dataset and tested on patients from a different country. We have evaluated decision tree, K-nearest neighbor, random forest, and Naïve Bayes in this research and the results show that both random forest and Naïve Bayes classifier performed well on both datasets.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献