Enhancing Load-Bearing Capacity of Calcareous Sands through Gel Stabilization: A Mechanical and Material Characterization Study

Author:

Gu Jianxiao1ORCID,Lyu Haibo23,Li Bo1,Wang Yong23,Chen Hui1,Gao Xinyi1,Xu Xiaojiang1

Affiliation:

1. Wenzhou Key Laboratory of Intelligent Lifeline Protection and Emergency Technology for Resilient City, College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China

2. College of Architecture and Electrical Engineering, Hezhou University, Hezhou 542899, China

3. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541000, China

Abstract

Calcareous sands often display wide ring grain configurations, high intragranular porosity, a complex structure, and low grain hardness. These attributes typically do not meet the strength criteria necessary to sustain overlying infrastructure in civil engineering applications. This study investigates gel stabilization techniques, blending gel material with calcareous sand at concentrations ranging from 5% to 22%, followed by curing periods of 3 to 28 days to evaluate the load-bearing capacity. Subsequently, an unconfined compressive test is performed to determine the gel material content in stabilized specimens and investigate the influence of gel material types. The gel material-to-sand ratios employed are set at 5%, 10%, and 16% for Portland cement and 13%, 16%, and 22% for gypsum. After that, a triaxial consolidated undrained test is conducted to assess mechanical behavior, pore water pressure, and mechanical properties. The findings reveal increased dilation, stress–strain hardening, and softening post-yield, regardless of gel material type. Principal stress ratios, secant modulus, and cohesion show a positive correlation with maintenance duration and binder content, with implications for improved load-bearing capacity. The study also elucidates the qualitative relationship between secant modulus E50 and confining pressure.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province, China

Natural Science Foundation of Zhejiang Province

Natural Science Foundation of Wenzhou Zhejiang Province

Science Foundation of the Wenzhou University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3