Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling

Author:

Suijs Ward1ORCID,Verhelst Sebastian12ORCID

Affiliation:

1. Department of Electromechanical, Systems and Metal Engineering, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

2. Department of Energy Sciences, Lund University, Ole Römers väg 1, Box 118, SE-221 00 Lund, Sweden

Abstract

The increased share of variable renewable energy sources such as wind and solar power poses constraints on the stability of the grid and the security of supply due to the imbalance between electricity production and demand. Chemical storage or power-to-X technologies can provide the flexibility that is needed to overcome this issue. To quantify the needs of such storage systems, energy system optimization models (ESOMs) are used, guiding policy makers in nationwide energy planning. The key input parameters for such models are the capacity and efficiency values of the conversion devices. Gas turbines, reciprocating engines, fuel cells and Rankine engines are often mentioned here as cogeneration technologies. Their performance parameters will however need to be revised when switching from fossil to renewable fuels. This study therefore investigates the possibility of using size-based scaling laws to predict the efficiency and power values of one type of conversion technology: the reciprocating engine. The most straightforward scaling laws are the ones based on the fundamental engine performance parameters and are constructed by fitting an arithmetic function for a large set of representative engine data. Their accuracy was tested with a case study, consisting of thirty large-bore, spark-ignited gas engines. Two alternative methods were also investigated: scaling laws based on the Willans line method and scaling laws based on the similarity theory. Their use is deemed impractical for the current research problem.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3