Modeling the Photovoltaic Power Generation in Poland in the Light of PEP2040: An Application of Multiple Regression

Author:

Rybak Aurelia1,Rybak Aleksandra2ORCID,Kolev Spas D.3ORCID

Affiliation:

1. Department of Electrical Engineering and Automation in Industry, Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland

2. Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland

3. School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia

Abstract

This paper presents the results of research on the development of photovoltaic systems in Poland. The authors’ goal was to identify factors that can potentially shape the dynamics of solar energy development in Poland and that will affect the implementation of the PEP2040 goals. The authors also wanted to find a forecasting method that would enable the introduction of many explanatory variables—a set of identified factors—into the model. After an initial review of the literature, the ARMAX and MLR models were considered. Finally, taking into account MAPE errors, multiple regression was used for the analysis, the error of which was 0.87% (minimum 3% for the ARMAX model). The model was verified based on Doornik–Hansen, Breusch–Pagan, Dickey–Fuller tests, information criteria, and ex post errors. The model indicated that LCOE, CO2 emissions, Cu consumption, primary energy consumption, patents, GDP, and installed capacity should be considered statistically significant. The model also allowed us to determine the nature of the variables. Additionally, the authors wrote the WEKR 2.0 program, which allowed to determine the necessary amount of critical raw materials needed to build the planned PV energy generating capacity. Solar energy in Poland currently covers about 5% of the country’s electricity demand. The pace of development of photovoltaic installations has exceeded current expectations and forecasts included in the Polish Energy Policy until 2040 (PEP2040). The built model showed that if the explanatory variables introduced into the model continue to be subject to the same trends shaping them, a dynamic increase in photovoltaic energy production should be expected by 2025. The model indicates that the PEP2040 goal of increasing the installed capacity to 16 GW by 2040 can be achieved already in 2025, where the PV production volume could reach 8921 GWh. Models were also made taking into account individual critical raw materials such as Cu, Si, Ge, and Ga. Each of them showed statistical significance, which means that access to critical raw materials in the future will have a significant impact on the further development of photovoltaic installations.

Funder

National Centre for Research and Development

Silesian University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference60 articles.

1. (2023, September 15). BP Statistical Review of World Energy. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

2. AA synthetic measure of energy security taking into account the influence of rare earth metals. The case of Poland;Rybak;Energy Rep.,2023

3. (2023, August 01). PEP 2040. The Energy Policy of Poland until 2040, Available online: https://www.gov.pl/web/klimat/polityka-energetyczna-polski.

4. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast;Kushwaha;Renew. Energy,2019

5. Short-term photovoltaic power dynamic weighted combination forecasting based on least squares method;Yang;IEEEJ Trans. Electr. Electron. Eng.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3