Variance of the Equatorial Atmospheric Circulations in the Reanalysis

Author:

Eresanya Emmanuel OlaOluwaORCID,Guan Yuping

Abstract

The structure of the equatorial atmospheric circulation, as defined by the zonal mass streamfunction (ZMS), computed using the new fifth-generation ECMWF reanalysis for the global climate and weather (ERA-5) and the National Centers for Environmental Prediction NCEP–US Department of Energy reanalysis (NCEP-2) reanalysis products, is investigated and compared with Coupled Model Intercomparison Project Phase 6 (CMIP 6) ensemble mean. The equatorial atmospheric circulations majorly involve three components: the Indian Ocean cell (IOC), the Pacific Walker cell (POC) and the Atlantic Ocean cell (AOC). The IOC, POC and AOC average monthly or seasonal cycle peaks around March, June and February, respectively. ERA-5 has a higher IOC intensity from February to August, whereas NCEP-2 has a greater IOC intensity from September to December; NCEP-2 indicates greater POC intensity from January to May, whereas ERA-5 shows higher POC intensity from June to October. For the AOC, ERA-5 specifies greater intensity from March to August and NCEP-2 has a higher intensity from September to December. The equatorial atmospheric circulations cells vary in the reanalysis products, the IOC is weak and wider (weaker and smaller) in the ERA-5 (NCEP-2), the POC is more robust and wider (feebler and teensier) in NCEP-2 (ERA-5) and the AOC is weaker and wider (stronger and smaller) in ERA-5 (NCEP-2). ERA-5 revealed a farther westward POC and AOC compared to NCEP-2. In the CMIP 6 model ensemble mean (MME), the equatorial atmospheric circulations mean state indicated generally weaker cells, with the IOC smaller and the POC greater swinging eastward and westward, respectively, while the AOC is more westward. These changes in equatorial circulation correspond to changes in dynamically related heating in the tropics.

Funder

China National Key R&D Program grant

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3