Evidence of a Climate-Change-Induced Shift in European Beech Distribution: An Unequal Response in the Elevation, Temperature and Precipitation Gradients

Author:

Klopčič Matija,Rozman Andrej,Bončina AndrejORCID

Abstract

Climate is a strong predictor of the geographic distribution of tree species, and thus climate change may trigger shifts in the distribution of a tree species and/or its demographic structure. In the study, we aim to comprehensively compare the distributions of four life stages of European beech (Fagus sylvatica) (i.e., regeneration, recruitment, young trees and mature trees) in forests in Slovenia, Central Europe, which are characterized by strong gradients of elevation (ELV), temperature (TEMP) and precipitation (PREC) to detect possible shifts in distribution and demography. Beech life stages were surveyed on 3366 plots. To depict disparities between ELV, TEMP and PREC distributions of beech life stages, we applied several non-parametric methods: basic statistical tests to study differences in medians, means, and 1st and 9th deciles; generalized additive models to study shifts in the optimum; and extreme value analysis to study shifts at the trailing and leading edges. A substantial shift in juvenile beech stages upward and toward colder sites was detected. However, the shift was not uniform along the distributions; the most significant shift was detected at the leading edge of ELV (+73 m) and TEMP (−2.6 °C), but surprisingly there was no beech movement identified at the trailing edge. The observed shift may be a result of the interplay between climate change, high spatial variability in microclimate, unexceptional droughts in the recent past, changes in forest use and possible limitations in the migration ability of beech and its adaptation capacity.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3