Generalized Framework for Liquid Neural Network upon Sequential and Non-Sequential Tasks

Author:

Karn Prakash Kumar1ORCID,Ardekani Iman2,Abdulla Waleed H.1ORCID

Affiliation:

1. Department of Electrical, Computer and Software Engineering, University of Auckland, Auckland 1010, New Zealand

2. School of Arts and Sciences, The University of Notre Dame Australia, Fremantle 6160, Australia

Abstract

This paper introduces a novel approach to neural networks: a Generalized Liquid Neural Network (GLNN) framework. This design excels at handling both sequential and non-sequential tasks. By leveraging the Runge Kutta DOPRI method, the GLNN enables dynamic simulation of complex systems across diverse fields. Our research demonstrates the framework’s capabilities through three key applications. In predicting damped sinusoidal trajectories, the Generalized LNN outperforms the neural ODE by approximately 46.03% and the conventional LNN by 57.88%. Modelling non-linear RLC circuits shows a 20% improvement in precision. Finally, in medical diagnosis through Optical Coherence Tomography (OCT) image analysis, our approach achieves an F1 score of 0.98, surpassing the classical LNN by 10%. These advancements signify a significant shift, opening new possibilities for neural networks in complex system modelling and healthcare diagnostics. This research advances the field by introducing a versatile and reliable neural network architecture.

Publisher

MDPI AG

Reference38 articles.

1. Karlsson, D., and Svanström, O. (2024, May 26). Modelling Dynamical Systems Using Neural Ordinary Differential Equations. Available online: https://odr.chalmers.se/handle/20.500.12380/256887.

2. Neural flows: Efficient alternative to neural ODEs;Sommer;Adv. Neural Inf. Process. Syst.,2021

3. Cai, H., Dan, T., Huang, Z., and Wu, G. (2023, January 18–21). OSR-NET: Ordinary Differential Equation-Based Brain State Recognition Neural Network. Proceedings of the 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, Colombia.

4. Wu, Y., Dong, M., Jena, R., Qin, C., and Gee, J.C. (2024). Neural Ordinary Differential Equation based Sequential Image Registration for Dynamic Characterization. arXiv.

5. Shi, Y., Jiang, K., Wang, K., Li, J., Wang, Y., Yang, M., and Yang, D. (2024, January 17–21). StreamingFlow: Streaming Occupancy Forecasting with Asynchronous Multi-modal Data Streams via Neural Ordinary Differential Equation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3