Waste-to-Energy Generation: Complex World Project Analysis

Author:

Vukovic Natalia1ORCID,Makogon Evgenia1ORCID

Affiliation:

1. Institute of Economics and Industrial Production Organization, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia

Abstract

Sustainable development and the circular economy mandate efficacious management of waste. The annually increasing volumes of municipal solid waste pose a formidable global challenge. Waste-to-energy conversion, utilizing thermochemical or biochemical technologies, presents a viable solution for mitigating waste disposal concerns. This study conducts a thorough analysis of extant projects to evaluate the economic viability and environmental benefits across various technologies. Employing a self-compiled, unique database, our examination spans enterprises operational from 1980 to 2022, including 37 of the most representative facilities across Europe, North America, and East and Southeast Asia. Economic efficiency is gauged through the levelized cost of electricity generated by these installations, while environmental impacts are assessed based on the statistics on prevented greenhouse gas emissions. The methodology encompasses correlation and techno–economic analyses and expert evaluation. Contrary to conventional wisdom, our findings challenge the ubiquity of scale effects among technologies and the presumed decline in electricity generation costs with newer technologies. However, they corroborate the enhanced environmental benefits of recent technological advancements. The insights derived from this research are poised to inform strategic municipal solid waste management planning in Russia and beyond, offering a foundation for the design of new facilities. The scientific novelty of this work lies in its holistic approach to analyzing the ecological and economic efficiencies of all extant technologies.

Funder

IEIE SB RAS, project "Driving forces and mechanisms of development of cooperation and integration processes in the Siberian economy"

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3