A Comprehensive Assessment of the Carbon Footprint of the Coal-to-Methanol Process Coupled with Carbon Capture-, Utilization-, and Storage-Enhanced Oil Recovery Technology

Author:

Li Xinyue1,Zhou Bin2,Jin Weiling1,Deng Huangwei1ORCID

Affiliation:

1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

2. College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830049, China

Abstract

The process of coal-to-methanol conversion consumes a large amount of energy, and the use of the co-production method in conjunction with carbon capture, utilization, and storage (CCUS) technology can reduce its carbon footprint. However, little research has been devoted to comprehensively assessing the carbon footprint of the coal-to-methanol (CTM) co-production system coupled with CCUS-enhanced oil recovery technology (CCUS-EOR), and this hinders the scientific evaluation of its decarbonization-related performance. In this study, we used lifecycle assessment to introduce the coefficient of distribution of methanol and constructed a model to calculate the carbon footprint of the process of CTM co-production of liquefied natural gas (LNG) as well as CTM co-production coupled with CCUS-EOR. We used the proposed model to calculate the carbon footprint of the entire lifecycle of the process by using a case study. The results show that the carbon footprints of CTM co-production and CTM co-production coupled with CCUS-EOR are 2.63 t CO2/tCH3OH and 1.00 t CO2/tCH3OH, respectively, which is lower than that of the traditional CTM process, indicating their ability to achieve environmental sustainability. We also analyzed the composition of the carbon footprint of the coal-to-methanol process to identify the root causes of carbon emissions in it and pathways for reducing them. The work described here provided a reference for decision making and a basis for promoting the development of coal-to-methanol conversion and the CCUS industry in China.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3