Abstract
A method for computation of the lightning channel base current from the corresponding vertical component of lightning electric field was presented. The algorithm was developed by applying Laplace transform. The lightning current was estimated from its deconvolution with a special transfer function. The transfer function includes information about geometry and physical properties of entire lightning impulse generation system. The method was verified for a Heidler-type base current and a MTLL model of its propagation within the lightning channel. Research was done for close, middle, and far distance to the lightning strike point. Optimum performance was obtained for the middle distance of several kilometers where the electrostatic, induction, and radiation components of the transfer function were of the same range. An analysis was done for input electric field with and without noise superimposed on its time domain waveform. Relative uncertainties for the electric field and calculated lightning channel base current were similar each other. The presented approach can substantially increase a number of lightning current parameters which can be identified on the basis of its electric field signature. This method can be applied by the lightning location systems using preprocessing which increases the timing efficiency of the transfer function estimation.
Funder
Ministerstwo Nauki i Szkolnictwa Wyższego
Minister of Science and Higher Education of the Republic of Poland
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献