Computation of Lightning Current from Electric Field Based on Laplace Transform and Deconvolution Method

Author:

Karnas GrzegorzORCID

Abstract

A method for computation of the lightning channel base current from the corresponding vertical component of lightning electric field was presented. The algorithm was developed by applying Laplace transform. The lightning current was estimated from its deconvolution with a special transfer function. The transfer function includes information about geometry and physical properties of entire lightning impulse generation system. The method was verified for a Heidler-type base current and a MTLL model of its propagation within the lightning channel. Research was done for close, middle, and far distance to the lightning strike point. Optimum performance was obtained for the middle distance of several kilometers where the electrostatic, induction, and radiation components of the transfer function were of the same range. An analysis was done for input electric field with and without noise superimposed on its time domain waveform. Relative uncertainties for the electric field and calculated lightning channel base current were similar each other. The presented approach can substantially increase a number of lightning current parameters which can be identified on the basis of its electric field signature. This method can be applied by the lightning location systems using preprocessing which increases the timing efficiency of the transfer function estimation.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Minister of Science and Higher Education of the Republic of Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3