A Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design

Author:

Costa Michela,La Villetta Maurizio,Piazzullo Daniele,Cirillo Domenico

Abstract

The development of a one-dimensional (1D) phenomenological model for biomass gasification in downdraft reactors is presented in this study; the model was developed with the aim of highlighting the main advantages and limits related to feedstocks that are different from woodchip, such as hydro-char derived from the hydrothermal carbonization of green waste, or a mix of olive pomace and sawdust. An experimental validation of the model is performed. The numerically evaluated temperature evolution along the reactor gasifier is found to be in agreement with locally measured values for all the considered biomasses. The model captures the pressure drop along the reactor axis, despite an underestimation with respect to the performed measurements. The producer gas composition resulting from the numerical model at the exit section is in quite good agreement with gas-chromatograph analyses (12% maximum error for CO and CO2 species), although the model predicts lower methane and hydrogen content in the syngas than the measurements show. Parametric analyses highlight that lower degrees of porosity enhance the pressure drop along the reactor axis, moving the zones characterized by the occurrence of the combustion and gasification phases towards the bottom. An increase in the biomass moisture content is associated with a delayed evolution of the temperature profile. The high energy expenditure in the evaporation phase occurs at the expense of the produced hydrogen and methane in the subsequent phases.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference44 articles.

1. IRENA: Global Energy Transformation, A Roadmap to 2050 https://www.irena.org/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf

2. IEA International Energy Agency, Renewables 2019—Analysis and Forecast to 2024 https://webstore.iea.org/market-report-series-renewables-2019

3. The “INNOVARE” Project: Innovative Plants for Distributed Poly-Generation by Residual Biomass

4. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview

5. Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3