Slow Deformation Time-Series Monitoring for Urban Areas Based on the AWHPSPO Algorithm and TELM: A Case Study of Changsha, China

Author:

Xing Xuemin1ORCID,Zhang Jihang1,Zhu Jun1,Zhang Rui2,Liu Bin1

Affiliation:

1. Institute of Radar Remote Sensing Applications for Traffic Surveying and Mapping, Changsha University of Science & Technology, Changsha 410114, China

2. National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China

Abstract

Health monitoring is important for densely distributed urban infrastructures, particularly in cities undergoing rapid economic progress. Permanent scatterer interferometry (PSI) is an advanced remote sensing observation technique that is commonly used in urban infrastructure monitoring. However, the rapid construction of infrastructures may easily cause a loss of coherence for radar interferometry, inducing a low density of effective permanent scatterer (PS) points, which is the main limitation of PSI. In order to address these problems, a novel time-series synthetic aperture radar interferometry (InSAR) process based on the adaptive window homogeneous pixel selection and phase optimization (AWHPSPO) algorithm and thermal expansion linear model (TELM) is proposed. Firstly, for homogeneous point selection, information on both the time-series intensity and deformation phases is considered, which can compensate for the defects of insufficient homogeneous samples and low phase quality in traditional distributed scatterer interferometric synthetic aperture radar (DS-InSAR) processing. Secondly, the physical, thermal expansion component, which reflects the material properties of the infrastructures, is introduced into the traditional linear model, which can more rationally reflect the temporal evolution of deformation variation, and the thermal expansion coefficients can be estimated simultaneously with the deformation parameters. In order to verify our proposed algorithm, the Orange Island area in Changsha City, China, was selected as the study area in this experiment. Three years of its historical time-series deformation fields and thermal expansion coefficients were regenerated. With the use of high-resolution TerraSAR-X radar satellite images, a maximum accumulated settlement of 12.3 mm and a minor uplift of 8.2 mm were detected. Crossvalidation with small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) results using Sentinel 1A data proved the reliability of AWHPSPO. The proposed algorithm can provide a reference for the control of the health and safety of urban infrastructures.

Funder

National Natural Science Foundation

Natural Science Foundation of Hunan Province, China

Changsha innovation talent promotion plan Project for Distinguished Young Scholar

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3