Abstract
The aim of this study was the investigation of the effect of growth conditions of energy willow (Salix viminalis L.) on its physical and chemical parameters towards lignocellulosic biofuels. This work is linked to the global trend of replacing fossil fuels (coal, oil, natural gas) with energy and renewable fuels. This energy transition is dictated by the reduction of the human-induced greenhouse effect (to the greatest extent by industrial development). Changing from traditional to renewable energy sources results in industry becoming less dependent on fuels whose sources are beginning to run out, and in energy processing being broken down into smaller sectors with greater flexibility to change and less susceptibility to failure. The use of lignocellulosic raw materials such as wood, straw, food industry waste, wood, and post-consumer products such as old furniture for energy purposes allows the use of substances which bind the greenhouse gas carbon dioxide in their cellular structure during growth. In order to optimise the costs of producing such energy and minimise its impact on the environment, these plants should be located as close as possible to the source of raw materials. One of the most important characteristics for the profitability of energy production from woody biomass is a high biomass yield. For this purpose, the raw material used for this study was energy willow (Salix viminalis L.) seedlings, which are often used for energy crops. Due to the moisture-loving nature of the substrate, the effect of the addition of the active substance prednisonum as a catalyst for water adsorption from the substrate was investigated. In order to determine the substances formed during the thermal decomposition of energy willow (Salix viminalis L.) wood, a pyrolysis process was carried out at 450 °C using pyrolysis gas chromatography mass spectrometry (PY/GC-MS).
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献