Abstract
The ancient roof decorative components of the official-style architectures from the Ming and Qing dynasties in China hold both physical and symbolic significance. These roof structures are the essential objects in three-dimensional (3D) modeling of ancient architectures for traditional Chinese cultural preservation. Although ancient architectures can be surveyed by a 3D laser scanner, the complex geometry and diverse pattern of their roof decorative components make the 3D point cloud reconstruction challenging, or at some points, nearly impossible in a fully automated manner. In this paper, we propose a method to ensure that the 3D shape of each roof decorative component is accurately modeled. First, we establish a decorative components template library (or “template library” in short hereafter), which is the first of its kind for the roofs of Ming and Qing official-style architectures. The process of establishing the decorative components template library begins with a remote collection of survey data using a terrestrial laser scanner and digital camera. The next stage involves the design and construction of different 3D decorative components in the template library with reference to the manuscripts written in the Ming and Qing dynasties’ architectural pattern books. With the point cloud data collected on any Ming and Qing official-style architecture, we further propose a geo-registration mechanism to search for an optimal fitting of the decorative components from the template library on the collected point cloud automatically. Based on the experimental results, the accuracy of point cloud registration yields less than 0.02 m, which meets the accuracy of the 3D model at LoD 300 level. Time consumption is less than 5s and stable, for large volume computing capacity has good robustness. The proposed strategy provides a new way for the 3D modeling of large and clustered historical architectures, particularly with complex structures.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献