Adaptation of the Invasive Plant Sphagneticola trilobata to Flooding Stress by Hybridization with Native Relatives

Author:

Zhang Qilei12,Chen Guangxin1,Ke Weiqian1,Peng Changlian1ORCID

Affiliation:

1. Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China

2. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China

Abstract

Hybridization is common between invasive and native species and may produce more adaptive hybrids. The hybrid (Sphagneticola × guangdongensis) of Sphagneticola trilobata (an invasive species) and S. calendulacea (a native species) was found in South China. In this study, S. trilobata, S. calendulacea, and Sphagneticola × guangdongensis were used as research materials to explore their adaptability to flooding stress. Under flooding stress, the ethylene content and the expression of key enzyme genes related to ethylene synthesis in Sphagneticola × guangdongensis and S. calendulacea were significantly higher than those in S. trilobata. A large number of adventitious roots and aerenchyma were generated in Sphagneticola × guangdongensis and S. calendulacea. The contents of reactive oxygen species and malondialdehyde in Sphagneticola × guangdongensis and S. calendulacea were lower than those in S. trilobata, and the leaves of S. trilobata were the most severely damaged under flooding stress. The results indicate that hybridization catalyzed the tolerance of Sphagneticola × guangdongensis to flooding stress, and the responses of Sphagneticola × guangdongensis to flooding stress were more similar to that of its native parent. This suggests that hybridization with native relatives is an important way for invasive species to overcome environmental pressure and achieve invasion.

Funder

National Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3