Leaching Efficiency and Kinetics of Platinum from Spent Proton Exchange Membrane Fuel Cells by H2O2/HCl

Author:

Chen Wei-Sheng1ORCID,Liu Wei-Shr1,Chen Wei-Chung1

Affiliation:

1. Department of Resources Engineering, National Cheng Kung University, No. 1, Daxue Rd., East Dist., Tainan City 701401, Taiwan

Abstract

The increasing carbon emissions from various fossil fuels have led to the search for efficient and clean energy sources to replace them. Proton exchange membrane fuel cells (PEMFCs) are a promising alternative, but the use of platinum as a catalyst material poses challenges due to its limited resources and low abundance. This study proposes an efficient method for platinum recovery while retaining spent membranes. The membrane and catalyst were separated using isopropanol, and the spent membrane was dissolved in a 50% ethanol solution to prepare the precursor for subsequent membrane regeneration. Hydrochloric acid (HCl) was used as the leaching agent, and the experimental parameters such as HCl concentration, H2O2 concentration, contact time, and operating temperature were optimized to achieve the highest platinum leaching rate. Finally, through isothermal leaching experiments, the leaching mechanism was investigated using the shrinking core model, indicating the involvement of both surface chemical and inner diffusion mechanisms in the platinum leaching process, primarily controlled by the inner diffusion mechanism. Under optimal conditions, the platinum leaching rate was about 90%, and the activation energy of the reaction was calculated to be 6.89 kJ/mol using the Arrhenius equation.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3