Towards Balanced Strength and Plasticity in Graphene-Nickel Composites: The Role of Graphene, Bimodal Metal Powder and Processing Conditions

Author:

Kurapova Olga Yu.12ORCID,Smirnov Ivan V.2,Archakov Ivan Yu.3,Chen Chao4,Konakov Vladimir G.13

Affiliation:

1. Laboratory of Mechanics of Novel Nanomaterials, Institute of Advanced Manufacturing Technologies, Peter the Great St. Petersburg Polytechnic University, Politecnicheskaya Str. 29, St. Petersburg 195251, Russia

2. Saint Petersburg State University, Universitetskya emb. 7/9, St. Petersburg 199034, Russia

3. Laboratory of Mechanics of Nanomaterials and Theory of Defects, Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, Bolshoy pr. 61, St. Petersburg 199178, Russia

4. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Abstract

Due to their higher strength and lighter weight compared to conventional metals, graphene-nickel (Gr-Ni) composites have recently gained growing interest for use in the automotive and aerospace industries. Homogeneous Gr dispersion, the metal powder dispersity and processing conditions play a key role in obtaining the desired grain size distribution, an amount of high angle grain boundaries thus reaching the desired balance between strength and plasticity of the composite. Here, we report an approach to fabricating graphene-nickel composites with balanced strength and ductility through the microstructure optimization of the nickel matrix. A graphite platelets (GP) content of 0.1–1 wt.% was used for the optimization of the mechanical properties of the material. In situ, conversion GP-to-Gr was performed during the milling step. This paper discusses the effect of bimodal nano- and micro-sized Ni (nNi and mNi) on the mechanical properties and microstructure of Gr-Ni composites synthesized using a modified powder metallurgy approach. Specimens with varied nNi:mNi ratios were produced by two-step compaction and investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, electron back-scattered diffraction (EBSD) and nanoindentation. The best combination of ultimate tensile strength (UTS), yield limit (YL), elongation and hardness were obtained for 100nNi and 50nNi matrices, and the best composites were those with 0.1% graphene. The addition of more than 0.5 wt.% GP to the nickel matrix induces the fracture mechanism change from tensile to brittle fracture. Dedicated to the 300th anniversary of the St. Petersburg University Foundation.

Funder

the Ministry of Science and Higher Education of the Russian Federation as part of the World-Class Research Center program “Advanced Digital Technologies”

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3