Identification and Functional Characterization of IDS Gene Mutations Underlying Taiwanese Hunter Syndrome (Mucopolysaccharidosis Type II)

Author:

Lin Hsiang-YuORCID,Tu Ru-Yi,Chern Schu-Rern,Lo Yun-Ting,Fran Sisca,Wei Fang-Jie,Huang Sung-Fa,Tsai Shin-Yu,Chang Ya-Hui,Lee Chung-Lin,Lin Shuan-Pei,Chuang Chih-KuangORCID

Abstract

Hunter syndrome (mucopolysaccharidosis II; MPS II) is caused by a defect of the iduronate-2-sulfatase (IDS) gene. Few studies have reported integrated mutation data of Taiwanese MPS II phenotypes. In this study, we summarized genotype and phenotype correlations of confirmed MPS II patients and asymptomatic MPS II infants in Taiwan. Regular polymerase chain reaction and DNA sequencing were used to identify genetic abnormalities of 191 cases, including 51 unrelated patients with confirmed MPS II and 140 asymptomatic infants. IDS activity was analyzed in individual novel IDS variants using in vitro expression studies. Nineteen novel mutations were identified, in which the percentages of IDS activity of the novel missense mutations c.137A>C, c.311A>T, c.454A>C, c.797C>G, c.817C>T, c.998C>T, c.1106C>G, c.1400C>T, c.1402C>T, and c.1403G>A were significantly decreased (p < 0.001), c.254C>T and c.1025A>G were moderately decreased (p < 0.01), and c.851C>T was slightly decreased (p < 0.05) comparing with normal enzyme activity. The activities of the other six missense mutations were reduced but were insignificant. The results of genomic studies and their phenotypes were highly correlated. A greater understanding of the positive correlations may help to prevent the irreversible manifestations of Hunter syndrome, particularly in infants suspected of having asymptomatic MPS II. In addition, urinary glycosaminoglycan assay is important to diagnose Hunter syndrome since gene mutations are not definitive (could be non-pathogenic).

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3