Abstract
Even though the Obg protein is essential for bacterial viability, the cellular functions of this universally conserved GTPase remain enigmatic. Moreover, the influence of GTP and GDP binding on the activity of this protein is largely unknown. Previously, we identified a mutant isoform of ObgE (the Obg protein of Escherichia coli) that triggers cell death. In this research we explore the biochemical requirements for the toxic effect of this mutant ObgE* isoform, using cell death as a readily accessible read-out for protein activity. Both the absence of the N-terminal domain and a decreased GTP binding affinity neutralize ObgE*-mediated toxicity. Moreover, a deletion in the region that connects the N-terminal domain to the G domain likewise abolishes toxicity. Taken together, these data indicate that GTP binding by ObgE* triggers a conformational change that is transmitted to the N-terminal domain to confer toxicity. We therefore conclude that ObgE*–GTP, but not ObgE*–GDP, is the active form of ObgE* that is detrimental to cell viability. Based on these data, we speculate that also for wild-type ObgE, GTP binding triggers conformational changes that affect the N-terminal domain and thereby control ObgE function.
Funder
Fonds Wetenschappelijk Onderzoek
Vrije Universiteit Brussel
Belgian Federal Science Policy Office
KU Leuven
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献