Author:
Liang Shanshan,Ye Hongqiang,Yuan Fusong
Abstract
Conventional bonding technology suitable for silica-based ceramics is not applicable to zirconia, due to its polycrystalline phase composition, chemical stability, and acid corrosion resistance. The development of an effective treatment to improve its surface roughness and mechanical properties remains an unresolved problem. Therefore, to solve this problem, this in vitro study evaluated the changes in surface morphology and flexural strength of translucent monolithic zirconia surfaces treated with femtosecond laser technology. As-sintered translucent zirconia specimens were subjected to airborne particle abrasion and femtosecond laser treatments, while control group specimens received no treatment. After treatment, the roughness and morphology of the treated zirconia surfaces were examined. The flexural strength and X-ray diffraction of the treated specimens were measured and analyzed. Statistical inferential analysis included one-way analysis of variance at a set significance level of 5%. The surface roughness after femtosecond laser treatment was significantly improved when compared with the control group and the group that received the airborne particle abrasion treatment (p < 0.05). In comparison with the airborne particle abrasion group, the flexural strength of the group that received the femtosecond laser treatment was significantly improved (p < 0.05). The femtosecond laser approach using appropriate parameters enhanced the roughness of the zirconia without reducing its flexural strength; therefore, this approach offers potential for the treatment of zirconia surfaces.
Funder
the National Key R&D Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献