Artificial Neural Network (ANN) Modeling Analysis of Algal Blooms in an Estuary with Episodic and Anthropogenic Freshwater Inputs

Author:

Park SangjunORCID,Sin Yongsik

Abstract

The Youngsan River estuary, located on the southwest coast of South Korea, has transitioned from a natural to an artificial estuary since dike construction in 1981 separated freshwater and seawater zones. This artificial transition has induced changes in the physical properties and circulation within the estuary, which has led to hypoxia and algal blooms. In this study, an artificial neural network (ANN) model was employed to simulate phytoplankton variations, including algal blooms and size fractions based on chlorophyll a, using data obtained by long-term monitoring (2008–2018) of the seawater zone of the Youngsan River estuary. The model was validated through statistical analyses, and the validated model was used to determine the contribution of the environmental factors on size-fractionated phytoplankton variations. The statistical validation of the model showed extremely low sum square error (SSE ≤ 0.0003) and root mean square error (RMSE ≤ 0.0173) values, with R2 ≥ 0.9952. The accuracy of the model predictions was high, despite the considerable irregularity and wide range of phytoplankton variations in the estuary. With respect to phytoplankton size structure, the contribution of seasonal environmental factors such as water temperature and solar radiation was high for net-sized chlorophyll a, whereas the contribution of factors such as freshwater discharge and salinity was high for nano-sized chlorophyll a, which includes typical harmful algae. Notably, because the Youngsan River estuary is influenced by a monsoon climate—characterized by high precipitation in summer—the contribution of freshwater discharge to harmful algal blooms is predicted to increase during this period. Our results suggest that the ANN model can be an important tool for understanding the influence of freshwater discharge, which is essential for managing algal blooms and maintaining the ecosystem health of altered estuaries.

Funder

National Research Foundation of Korea

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3