Abstract
Flow velocity in silt carrying flow is one key parameter to many river engineering problems. A visual measurement technique of velocity profile distribution in silt carrying flow is provided using a portable ultrasound imaging system and an improved iterative multi-grid deformation algorithm. A convex array probe in the system is used to obtain a series of ultrasonic images at different times. Window offset and an iterative computing scheme for reducing interrogation window size in the algorithm improve the accuracy and efficiency of flow velocity measurement in regions with velocity gradients. Results show that the measured profile velocities can be more acceptable after being compared with time-averaged stream-wise velocities of profiles at ten positions in the same silt carrying flow and subsequently verified by comparing the point-by-point standard value. The measured velocity is more in agreement with the theoretical value, with the minimum root mean square error in the ultrasound beam sweep effect calculated by using optimal interrogation size parameters. The system is a feasible alternative to the single-point measurement technique in silt carrying flow. The iterative multi-grid deformation algorithm can analyze velocity profile distribution with gradients simultaneously, which can help the real-time measurement of multiple spatial velocity distribution and turbulence.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献