A Novel Load Scheduling Mechanism Using Artificial Neural Network Based Customer Profiles in Smart Grid

Author:

Khalid Zubair,Abbas GhulamORCID,Awais Muhammad,Alquthami ThamerORCID,Rasheed Muhammad BabarORCID

Abstract

In most demand response (DR) based residential load management systems, shifting a considerable amount of load in low price intervals reduces end user cost, however, it may create rebound peaks and user dissatisfaction. To overcome these problems, this work presents a novel approach to optimizing load demand and storage management in response to dynamic pricing using machine learning and optimization algorithms. Unlike traditional load scheduling mechanisms, the proposed algorithm is based on finding suggested low tariff area using artificial neural network (ANN). Where the historical load demand individualized power consumption profiles of all users and real time pricing (RTP) signal are used as input parameters for a forecasting module for training and validating the network. In a response, the ANN module provides a suggested low tariff area to all users such that the electricity tariff below the low tariff area is market based. While the users are charged high prices on the basis of a proposed load based pricing policy (LBPP) if they violate low tariff area, which is based on RTP and inclining block rate (IBR). However, we first developed the mathematical models of load, pricing and energy storage systems (ESS), which are an integral part of the optimization problem. Then, based on suggested low tariff area, the problem is formulated as a linear programming (LP) optimization problem and is solved by using both deterministic and heuristic algorithms. The proposed mechanism is validated via extensive simulations and results show the effectiveness in terms of minimizing the electricity bill as well as intercepting the creation of minimal-price peaks. Therefore, the proposed energy management scheme is beneficial to both end user and utility company.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CO2 emissions integrated fuzzy model: A case of seven emerging economies;Energy Reports;2023-12

2. Construction of Intelligent Power Grid Load Management System Based on Artificial Neural Network Algorithm;2023 International Conference on Power, Electrical Engineering, Electronics and Control (PEEEC);2023-09-25

3. Artificial Intelligence Enabled Demand Response: Prospects and Challenges in Smart Grid Environment;IEEE Access;2023

4. Intelligent Grid Scheduling Algorithm based on Artificial Neural Network;2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2022-12-02

5. A Concise Review on Recent Optimization and Deep Learning Applications in Blockchain Technology;Artificial Intelligence in Industry 4.0 and 5G Technology;2022-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3