A Novel Biosensor for the Detection of Glucose Concentration Using the Dual-Peak Long Period Grating in the Near- to Mid-Infrared

Author:

Sahoo Namita1ORCID,Sun Bing2,Tan Yidong3,Zhou Kaiming1,Zhang Lin1

Affiliation:

1. Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK

2. College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

3. Department of Precision Instrument, Tsinghua University, Beijing 100084, China

Abstract

In this article, we demonstrate an improved efficient fibre sensor with a high sensitivity to measure glucose concentrations in the physiological range of human beings, operating in a broad spectral bandwidth from the near- to mid-infrared. The sensor consists of a dual-peak long period grating (DPLPG) with a period of 150 μm inscribed in an optical fibre with a diameter of 80 μm. The investigation of sensing for refractive index results in a sensitivity of ~−885.7 nm/refractive index unit (RIU) and ~2008.6 nm/RIU in the range of 1.30–1.44. The glucose measurement is achieved by the immobilisation of a layer of enzyme of glucose oxidase (GOD) onto the fibre surface for the selective enhancement of sensitivity for glucose. The sensor can measure glucose concentrations with a maximum sensitivity of −36.25 nm/(mg/mL) in the range of 0.1–3.0 mg/mL. To the best of our knowledge, this is the highest sensitivity ever achieved for a measurement of glucose with a long period grating-based sensor, indicating its potential for many applications including pharmaceutical, biomedical and food industries.

Funder

UK Royal Society Newton Advanced Fellowship programme

European Union Horizon 2020 Research and Innovation Staff Exchange (RISE) programme

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel approach to detect glucose concentration using active cavity Whispering Gallery Mode sensor;International Journal of Numerical Modelling: Electronic Networks, Devices and Fields;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3