Abstract
Piston motion is an important factor in improving the energy conversion efficiency of free-piston engine generators (FPEGs), and an air cylinder is an important component affecting piston motion. In this study, the effect of the air cylinder specifications on the piston drive frequency and energy conversion efficiency is clarified. By considering that the repulsion force of an air cylinder is nonlinear, the main factors that change the piston drive frequency were investigated by simulation. In addition, a piston drive frequency diagram was drawn based on the top surface area of the air cylinder and the compression ratio to discuss the effect of the air cylinder specifications on the piston drive frequency. The results indicate that the air cylinder specifications affect the piston drive frequency and generation force of a linear machine. Moreover, the structure of the air cylinder and the constraints on the maximum generation force of the linear machine narrow the possible operating range in the piston drive frequency. The air cylinder specifications based on the piston drive frequency diagram improved the FPEG energy conversion efficiency by 0.5%.
Funder
Japan Society for the Promotion of Science
Nagamori Foundation Research Grant
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献