The Software Cache Optimization-Based Method for Decreasing Energy Consumption of Computational Clusters

Author:

Kravets Alla G.ORCID,Egunov Vitaly

Abstract

Reducing the consumption of electricity by computing devices is currently an urgent task. Moreover, if earlier this problem belonged to the competence of hardware developers and the design of more cost-effective equipment, then more recently there has been an increased interest in this issue on the part of software developers. The issues of these studies are extensive. From energy efficiency issues of various programming languages to the development of energy-saving software for smartphones and other gadgets. However, to the best of our knowledge, no study has reported an analysis of the impact of cache optimizations on computing devices’ power consumption. Hence, this paper aims to provide an analysis of such impact on the software energy efficiency using the original software design procedure and computational experiments. The proposed Software Cache Optimization (SCO)-based Methodology was applied to one of the key linear algebra transformations. Experiments were carried out to determine software energy efficiency. RAPL (Running Average Power Limit) was used—an interface developed by Intel, which provides built-in counters of Central Processing Unit (CPU) energy consumption. Measurements have shown that optimized software versions reduce power consumption up to 4 times in relation to the basic transformation scheme. Experimental results confirm the effectiveness of the SCO-based Methodology used to reduce energy consumption and the applicability of this technique for software optimization.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference48 articles.

1. Power Consumption and Throughput of Wireless Communication Technologies for Smartphones

2. Energy efficiency for IoT devices in home environments

3. Power Consumption and Performance Balance (PCPB) scheduling algorithm for computer cluster

4. Understanding human-battery interaction on mobile phones;Rahmati;Proceedings of the 9th International Conference on Human Computer Interaction with Mobile Devices and Services,2007

5. Energy efficient computing, clusters, grids and clouds: A taxonomy and survey;Zakarya,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3