Improving the Dynamic Behavior of a Hybrid Electric Rotorcraft for Urban Air Mobility

Author:

Donateo TeresaORCID,Spada Chiodo LudovicaORCID,Ficarella AntonioORCID,Lunaro Andrea

Abstract

A rising number of aerospace manufacturers are working on the development of new solutions in the field of Urban Air Mobility with increasing attention addressing electric and hybrid electric propulsive systems. Hybrid electric propulsive systems potentially offer performance improvements during transient maneuvers, as well as sustaining the engine during flight phases characterized by high power demands. Among the challenges of hybridization in rotorcraft, there is the necessity to predict the dynamic behavior and its effect on the control of rotor shaft speed. In the present study, the dynamic behavior of a parallel hybrid electric propulsive system for a coaxial-rotor air taxi is analyzed in response to a typical sequence of pilot commands that encompasses the range of operations from hover to forward flight. The system is modeled with a dynamic approach and includes sub-models for the coaxial rotors, the turboshaft engine, the electric machine, and the battery. The results of the investigation show a better performance during transients of the hybrid system than a conventional turboshaft configuration, especially if the electric contribution to the power request is coordinated to account for the lag due to slower engine dynamic response.

Funder

Italian Ministry for Education, University and Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference48 articles.

1. An Initial Concept for Intermediate-State, Passenger-Carrying Urban Air Mobility Operations

2. Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research

3. Press Release: Vertical Flight Society Electric VTOL Directory Hits 600 Concepts

4. UAM Vision Concept of Operations (ConOps) UAM Maturity Level (UML) 4. UAM UML-4,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3