Modeling Yield Strength of Austenitic Stainless Steel Welds Using Multiple Regression Analysis and Machine Learning

Author:

Park Sukil12,Choi Myeonghwan2,Kim Dongyoon3ORCID,Kim Cheolhee34ORCID,Kang Namhyun2ORCID

Affiliation:

1. Manufacturing Innovation Lab, HD Korea Shipbuilding & Offshore Engineering Co., Ltd., Seoul 03058, Republic of Korea

2. Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea

3. Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea

4. Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97229, USA

Abstract

Designing welding filler metals with low cracking susceptibility and high strength is essential in welding low-temperature base metals, such as austenitic stainless steel, which is widely utilized for various applications. A strength model for weld metals using austenitic stainless steel consumables has not yet been developed. In this study, such a model was successfully developed. Two types of models were developed and analyzed: conventional multiple regression and machine-learning-based models. The input variables for these models were the chemical composition and heat input per unit length. Multiple regression analysis utilized five statistically significant input variables at a significance level of 0.05. Among the prediction models using machine learning, the stepwise linear regression model showed the highest coefficient of determination (R2) value and demonstrated practical advantages despite having a slightly higher mean absolute percentage error (MAPE) than the Gaussian process regression models. The conventional multiple regression model exhibited a higher R2 (0.8642) and lower MAPE (3.75%) than the machine-learning-based predictive models. Consequently, the models developed in this study effectively predicted the variation in the yield strength resulting from dilution during the welding of high-manganese steel with stainless-steel-based welding consumables. Furthermore, these models can be instrumental in developing new welding consumables, thereby ensuring the desired yield strength levels.

Funder

Technology Innovation Program–Materials and Components Development Program

Ministry of Trade, Industry, and Energy

Korea Institute of Industrial Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3