Affiliation:
1. Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics, the Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
Abstract
Background: Inflammation is a major driver of heterotopic ossification (HO), a condition of abnormal bone growth in a site that is not normally mineralized. Purpose of review: This review will examine recent findings on the roles of inflammation and the immune system in fibrodysplasia ossificans progressiva (FOP). FOP is a genetic condition of aggressive and progressive HO formation. We also examine how inflammation may be a valuable target for the treatment of HO. Rationale/Recent findings: Multiple lines of evidence indicate a key role for the immune system in driving FOP pathogenesis. Critical cell types include macrophages, mast cells, and adaptive immune cells, working through hypoxia signaling pathways, stem cell differentiation signaling pathways, vascular regulatory pathways, and inflammatory cytokines. In addition, recent clinical reports suggest a potential role for immune modulators in the management of FOP. Future perspectives: The central role of inflammatory mediators in HO suggests that the immune system may be a common target for blocking HO in both FOP and non-genetic forms of HO. Future research focusing on the identification of novel inflammatory targets will help support the testing of potential therapies for FOP and other related conditions.
Funder
National Institutes of Health
University of California, San Francisco