Wastewater Treatment with Bacterial Representatives of the Thiothrix Morphotype

Author:

Gureeva Maria V.1ORCID,Muntyan Maria S.2ORCID,Ravin Nikolai V.3ORCID,Grabovich Margarita Yu.1ORCID

Affiliation:

1. Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia

2. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia

3. Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia

Abstract

Bacteria of the Thiothrix morphotype, comprising the genera Thiothrix, Thiolinea and Thiofilum, are frequently encountered in domestic and industrial wastewater treatment systems, but they are usually not clearly differentiated due to the marked similarity in their morphologies. Methods ranging from light microscopy, FISH and PCR to modern high-throughput sequencing are used to identify them. The development of these bacteria in wastewater treatment systems has both advantages and disadvantages. On the one hand, the explosive growth of these bacteria can lead to activated sludge bulking or clogging of the treatment system’s membranes, with a consequent decrease in the water treatment efficiency. On the other hand, members of the Thiothrix morphotype can improve the quality of granular sludge and increase the water treatment efficiency. This may be due to their capacity for sulfide oxidation, denitrification combined with the oxidation of reduced sulfur compounds, enhanced biological phosphate removal and possibly denitrifying phosphate removal. The recently obtained pangenome of the genus Thiothrix allows the explanation, at the genomic level, of the experimental results of various studies. Moreover, this review summarizes the data on the factors affecting the proliferation of representatives of the Thiothrix morphotype.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3