An Insight into the Mechanism of DNA Cleavage by DNA Endonuclease from the Hyperthermophilic Archaeon Pyrococcus furiosus

Author:

Davletgildeeva Anastasiia T.1ORCID,Kuznetsova Aleksandra A.1ORCID,Ishchenko Alexander A.2ORCID,Saparbaev Murat2ORCID,Kuznetsov Nikita A.3ORCID

Affiliation:

1. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia

2. Group «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, F-94805 Villejuif CEDEX, France

3. Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia

Abstract

Hyperthermophilic archaea such as Pyrococcus furiosus survive under very aggressive environmental conditions by occupying niches inaccessible to representatives of other domains of life. The ability to survive such severe living conditions must be ensured by extraordinarily efficient mechanisms of DNA processing, including repair. Therefore, in this study, we compared kinetics of conformational changes of DNA Endonuclease Q from P. furiosus during its interaction with various DNA substrates containing an analog of an apurinic/apyrimidinic site (F-site), hypoxanthine, uracil, 5,6-dihydrouracil, the α-anomer of adenosine, or 1,N6-ethenoadenosine. Our examination of DNA cleavage activity and fluorescence time courses characterizing conformational changes of the dye-labeled DNA substrates during the interaction with EndoQ revealed that the enzyme induces multiple conformational changes of DNA in the course of binding. Moreover, the obtained data suggested that the formation of the enzyme–substrate complex can proceed through dissimilar kinetic pathways, resulting in different types of DNA conformational changes, which probably allow the enzyme to perform its biological function at an extreme temperature.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3