Impact of Eccentric Exercise Interventions with Small and Large Ranges of Motion on Rat Skeletal Muscle Tissue and Muscle Force Production

Author:

Oga Ryoya1ORCID,Nakagawa Koki1,Chen Yi-Chen1,Nita Yoshihiro1,Tamaki Hiroyuki1

Affiliation:

1. Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya 891-2393, Japan

Abstract

Eccentric training induces greater hypertrophy while causing more muscle damage than concentric training. This study examined the effects of small-range eccentric contractions (SR-ECCs) and large-range eccentric contractions (LR-ECCs) on muscle morphology, contractility, and damage in rats. Thirty male Fischer 344 rats were divided into five groups: small-range ECC single-bout (SR-ECCSB, n = 4), large-range ECC single-bout (LR-ECCSB, n = 4), SR-ECC intervention (SR-ECCIntv, n = 7), LR-ECC intervention (LR-ECCIntv, n = 8), and control (Cont, n = 7). These groups underwent transcutaneous electrical stimulation involving 80 ECCs twice a week for four weeks. The results indicated that the LR-ECCSB group had more Evans blue dye-positive fibers than other groups. The SR-ECCIntv group showed no increase in the mean myofiber cross-sectional area. However, Pax7+ and Ki67+ cells significantly increased in both ECCIntv groups compared to the Cont group, and the connective tissue area was significantly greater in the LR-ECCIntv than in others. Muscle force was lower in both ECCIntv groups compared to the Cont group. These findings suggest that SR-ECC intervention may induce a smaller increase in the number of fibers with a large myofiber cross-sectional area and satellite cell proliferation with less muscle damage and myofibrosis compared to LR-ECCs.

Funder

Grant-in-Aid for Scientific Research

Grant-in-Aid for Scientific Research from the National Institute of Fitness and Sports in Kanoya

Publisher

MDPI AG

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3